作者:赵涓涓,强彦 编 日期:2021-11-18 16:55:27
本书以案例驱动的方式讲解机器学习算法的知识点,并以Python语言作为基础开发语言实现算法,包括目前机器学习主流算法的原理、算法流程图、算法的详细设计步骤、算法实例、算法应用、算法的改进与优化等环节。全书共分17章,前两章介绍机器学习与Python语言的相关基础知识,后面各章以案例的方式分别介绍线性回归算法、逻辑回归算法、K很近邻算法、PCA降维算法、k-means算法、支持向量机算法、AdaBoost算法、决策树算法、高斯混合模型算法、随机森林算法、朴素贝叶斯算法、隐马尔可夫模型算法、BP神经网络算法、卷积神经网络算法、递归神经网络算法。本书适合作为高等院校人工智能、大数据、计算机科学、软件工程等相关专业本科生和研究生有关课程的教材,也适用于各种计算机编程、人工智能学习认证体系,还可供广大人工智能领域技术人员参考。