孤 島 書 城

纸书新书文集文学小说

娱乐青春社科玄幻网热


作品介绍

复几何导论


作者:[德]DanielHuybrechts  日期:2017-02-24 16:43:42




  《复几何导论(英文版)》内容简介:Complex geometry is a highly attractive branch of modern mathematics that has witnessed many years of active and successful research and that has recently obtained new impetus from physicists' interest in questions related to mirror symmetry. Due to its interactions with various other fields (differential, algebraic, and arithmetic geometry, but also string theory and conformal field theory), it has become an area with many facets. Also, there are a number of challenging open problems which contribute to the subject's attraction. The most famous among them is the Hodge conjecture, one of the seven one-million dollar millennium problems of the Clay Mathematics Institute. So, it seems likely t at this area will fascinate new generations for many years to come.

目录:
  1 Local Theory 1
  1.1 Holomorphic Functions of Several Variables 1
  1.2 Complex and Hermitian Structures 25
  1.3 Differential Forms 42
  2 Complex Manifolds 51
  2.1 Complex Manifolds: Definition and Examples 52
  2.2 Holomorphic Vector Bundles 66
  2.3 Divisors and Line Bundles 77
  2.4 The Projective Space 91
  2.5 Blow-ups 98
  2.6 Differential Calculus on Complex Manifolds 104
  3 Kahler Manifolds 113
  3.1 Kahler Identities 114
  3.2 Hodge Theory on Kahler Manifolds 125
  3.3 Lefschetz Theorems 132
  Appendix 145
  3.A Formality of Compact Kahler Manifolds 145
  3.B SUSY for Kahler Manifolds 155
  3.C Hodge Structures 160
  4 Vector Bundles 165
  4.1 Hermitian Vector Bundles and Serre Duality 166
  4.2 Connections 173
  4.3 Curvature 182
  4.4 Chern Classes 193
  Appendix 206
  4.A Levi-Civita Connection and Holonomy on Complex Manifolds . 206
  4.B Hermite-Einstein and Kahler-Einstein Metrics 217
  5 Applications of Cohomology 231
  5.1 Hirzebruch-Riemann-Roch Theorem 231
  5.2 Kodaira Vanishing Theorem and Applications 239
  5.3 Kodaira Embedding Theorem 247
  6 Deformations of Complex Structures 255
  6.1 The Maurer-Cartan Equation 255
  6.2 General Results 268
  Appendix 275
  6.A dGBV-Algebras 275
  A Hodge Theory on Differentiate Manifolds 281
  B Sheaf Cohomology 287
  References 297
  Index 303







阅读提示:复几何导论的作者是[德]DanielHuybrechts,全书语言优美,行文流畅,内容丰富生动引人入胜。为表示对作者的支持,建议在阅读电子书的同时,购买纸质书。

复几何导论下载地址

上一本:数值分析
下一本:文明之路

经典文集

历届诺贝尔文学奖获奖作家作品
21世纪年度最佳外国小说
阎连科作品集
世界文学经典名篇
中国现代诗人诗集精选集
经典言情小说作家作品集
历届茅盾文学奖获奖作品
中国经典文学作品精选
莫言作品全集
金庸武侠小说全集
世界十大文学名著
中国古典十大名著
死活读不下去的十本书
世界短篇小说精华作品
刘震云作品集

孤岛书城 ◎ 版权所有