作者:沈巍 日期:2018-11-12 11:14:59
本书针对以往人口预测中仅考虑数量化影响因素的不足,以北京市为例,进一步全面考虑对人口增长有重要影响的定性类知识性影响因素,研究建立包含数据库、文本库、推理规则库和经验知识库的复合知识库。综合调动复合知识库中的所有知识,用知识性因素动态调整数量化因素在预测中产生的误差,挖掘出与预测目标高度相似的新的历史数据作为输入数据,从而形成一种基于复合知识挖掘的新的建模预处理技术;研究神经网络优化技术和决策树嵌入神经网络技术,建立能同时处理定量和定性影响因素的基于复合知识挖掘的智能优化神经网络预测模型。在预测技术中,zui大的难题就是如何对定性类知识性因素进行处理。而这类因素在促进北京市人口膨胀中起到重要作用。将这类因素挖掘出来带入预测模型,提高预测精度,在理论和实践上具有重要意义。
预测理论发展到今天,面临的*难题就是如何处理这类知识性文本因素。为了解决这种问题,本书研究运用智能化知识挖掘技术,通过对影响北京市人口增长的知识性文本类因素进行知识发现、知识分类、知识清洗、知识提取、知识预处理等工作,挖掘出对北京市人口膨胀有重要影响的知识性因素,希望能为北京市人口有效调控提供重要参考。