作者:史忠植 日期:2017-02-27 23:55:10
《知识发现(第2版)》全面而又系统地介绍了知识发现的方法和技术,反映了当前知识发现研究的最新成果和进展。全书共分15章。第1章是绪论,概述知识发现的重要概念和发展过程。下面三章重点讨论分类问题,包括决策树、支持向量机和迁移学习。第5章阐述聚类分析。第6章是关联规则。第7章讨论粗糙集和粒度计算。第8章介绍神经网络,书中着重介绍几种实用的算法。第9章探讨贝叶斯网络。第10章讨论隐马尔可夫模型。第11章探讨图挖掘。第12章讨论进化计算和遗传算法。第13章探讨分布式知识发现,它使海量数据挖掘成为可能。最后两章以web知识发现、认知神经科学为例,介绍知识发现的应用。
《知识发现(第2版)》内容新颖,认真总结了作者的科研成果,取材国内外最新资料,反映了当前该领域的研究水平。论述力求概念清晰,表达准确,算法丰富,突出理论联系实际,富有启发性。
知识发现是从数据集中识别出有效的、新颖的、潜在有用的,以及最终可理解的模式的非平凡过程。知识发现将信息变为知识,从数据资源中发现知识宝藏,将为知识创新和知识经济的发展作出贡献。
《知识发现(第2版)》可以用作高等院校有关专业的研究生和高年级本科生的知识发现、数据挖掘、机器学习等课程教材,也可供从事知识发现、数据挖掘、机器学习、智能信息处理、模式识别、智能控制研究和知识管理的科技人员阅读参考。