大学数学是自然科学的基本语言,是应用模式探索现实世界物质运动机理的主要手段。对于非数学专业的学生而言,大学数学的教育,其意义则远不仅仅是学习一种专业的工具而已。事实上,在大学生涯中,就提高学习基础、提升学习能力、培养科学素质和创新能力而言,大学数学是最有用且最值得你努力的课程。
作者:吴赣昌
前言
第6章 多元函数微积分
6.1 空间解析几何简
6.2 多元函数的基本概念
6.3 偏导数
6.4 全微分
6.5 复合函数微分法与隐函数微分法
6.6 多元函数的极值及其求法
6.7 二重积分的概念与性质
6.8 在直角坐标系下二重积分的计算
6.9 在极坐标系下二重积分的计算
本章小结
第7章 无穷级数
7.1 常数项级数的概念和性质
7.2 正项级数的判别法
7.3 一般常数项级数
7.4 幂级数
7.5 函数展开成幂级数
本章小结
第8章 微分方程与差分方程
8.1 微分方程的基本概念
8.2 可分离变量的微分方程
8.3 一阶线性微分方程
8.4 可降阶的二阶微分方程
8.5 二阶线性微分方程解的结构
8.6 二阶常系数齐次线性微分方程
8.7 二阶常系数非齐次线性微分方程
8.8 数学建模——微分方程的应用举例
8.9 差分方程
本章小结
作者吴赣昌
类别 图书 / 非虚构
提供方中国人民大学出版社