作者:张宝昌,杨万扣,林娜娜 编 日期:2021-11-21 00:15:00
本书旨在通过对机器学习主要原理和方法的介绍,并且结合作者多年来在视觉感知方面的研究成果,对于其他书籍未涉及的一些前沿研究进行补充阐述。本书面向有一定数学基础的模式识别专业的本科生和研究生,以及有志于钻研模式识别相关领域,包括机器学习和视觉感知等方向的读者,通过对于基础理论循序渐进、深人浅出的讲解,帮助读者更快速地掌握机器学习的基本方法,在此基础上每章的内容由易到难,读者可以根据自己的掌握程度以及兴趣,选择特定的方向进行更深人的学习。张宝昌, 北京航空航天大学自动化学院长聘副教授,特聘研究员。2001-2006年,中国科学院,中科院联合实验室(jdl)2007年很好论文提名奖。2006-2007先后在香港中文大学、澳大利亚Griffith University从事研究工作,主要的研究方向为人脸识别、视频理解、机器学习。2008.3-,北航自动化学院,主讲“模式识别与机器学习”“现代控制导论”“机器学习理论与应用”“图像处理系列实验”等课程。自获得博士学位(2007年)以来发表论文40余篇,其中SCI(SCI)检索期刊12篇(其中1篇录用待检索),EI检索16篇,在SCI网络版他引次数155次。